Nonlinear model reduction via a locally weighted POD method

نویسندگان

  • Liqian Peng
  • Kamran Mohseni
چکیده

In this article, we propose a new approach for model reduction of parameterized partial differential equations (PDEs) by a locally weighted proper orthogonal decomposition (LWPOD) method. The presented approach is particularly suited for large-scale nonlinear systems characterized by parameter variations. Instead of using a global basis to construct a global reduced model, LWPOD approximates the original system by multiple local reduced bases. Each local reduced basis is generated by the singular value decomposition of a weighted snapshot matrix. Compared with global model reduction methods, such as the classical proper orthogonal decomposition, LWPOD can yield more accurate solutions with a fixed subspace dimension. As another contribution, we combine LWPOD with the chord iteration to solve elliptic PDEs in a computationally efficient fashion. The potential of the method for achieving large speedups while maintaining good accuracy is demonstrated for both elliptic and parabolic PDEs in a few numerical examples. Copyright © 2016 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Model Reduction via Discrete Empirical Interpolation

Nonlinear Model Reduction via Discrete Empirical Interpolation by Saifon Chaturantabut This thesis proposes a model reduction technique for nonlinear dynamical systems based upon combining Proper Orthogonal Decomposition (POD) and a new method, called the Discrete Empirical Interpolation Method (DEIM). The popular method of Galerkin projection with POD basis reduces dimension in the sense that ...

متن کامل

Application of POD and DEIM on Dimension Reduction of Nonlinear Miscible Viscous Fingering in Porous Media

A Discrete Empirical Interpolation Method (DEIM) is applied in conjunction with Proper Orthogonal Decomposition (POD) to construct a nonlinear reduced-order model of finite difference discretized system used in the simulation of nonlinear miscible viscous fingering in a 2-D porous medium. POD is first applied to extract a low-dimensional basis that optimally captures the dominant characteristic...

متن کامل

Energy preserving model order reduction of the nonlinear Schrödinger equation

An energy preserving reduced order model is developed for the nonlinear Schrödinger equation (NLSE). The NLSE is discretized in space by the symmetric interior penalty discontinuous Galerkin (SIPG) method. The resulting system of Hamiltonian ordinary differential equations are integrated in time by the energy preserving average vector field (AVF) method. Preservation of the semi-discrete energy...

متن کامل

System Identification Using the Proper Orthogonal Decomposition with Multiple Loads

The Proper Orthogonal Decomposition (POD) is a method that may be applied to linear and nonlinear structures for extracting important information from a measured structural response. Previous methods of using the POD for system identification typically use the POD for model reduction only and system identification is accomplished via standard methods. A method for using the POD-based identifica...

متن کامل

Model Reduction for fluids, Using Balanced Proper Orthogonal Decomposition

Many of the tools of dynamical systems and control theory have gone largely unused for fluids, because the governing equations are so dynamically complex, both high-dimensional and nonlinear. Model reduction involves finding low-dimensional models that approximate the full high-dimensional dynamics. This paper compares three different methods of model reduction: proper orthogonal decomposition ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015